Ballistic Motion Planning

20184612 Ian Libao

Overview

- Motivation
- Paper 1: Ballistic Motion Planning
- Paper 2: Single Leg Dynamic Motion Planning with Mixed-Integer Convex Optimization
- Summary
- Quiz

Motivation

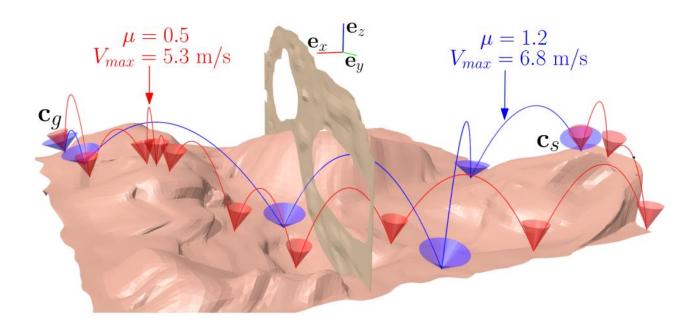
• Jumping motion introduces new shortcuts

- Instead of going around an obstacle block, why not jump over it?
- Unreachable locations can become reachable
- This would increase complexity for the path planning algorithm

Paper 1: Ballistic Motion Planning

Mylene Campana | Jean-Paul Laumond IROS 2016

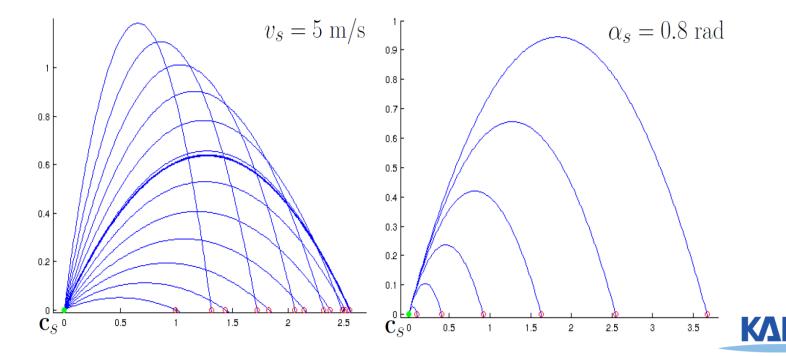
 Developed a motion planning algorithm for jumping point robot in arbitrary environment considering slipping and velocity constraints



Accessible Space

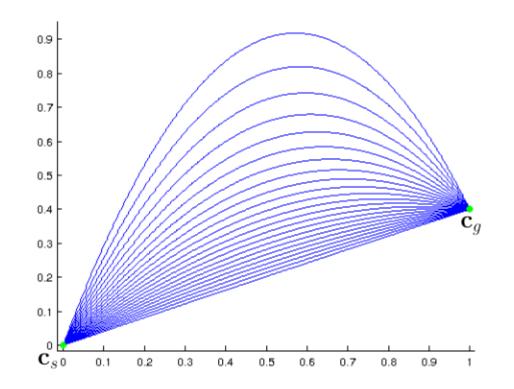
Parabola trajectory is determined by takeoff angle and initial velocity

$$\mathbf{c}(t) = -\frac{g}{2} t^2 \,\mathbf{e}_z + \dot{\mathbf{c}}_s t + \mathbf{c}_s$$



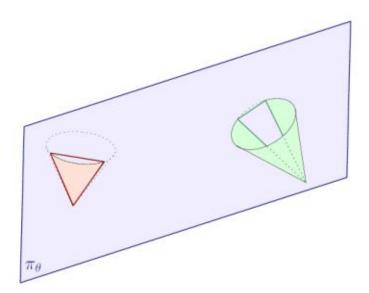
Goal Oriented Ballistic Motion

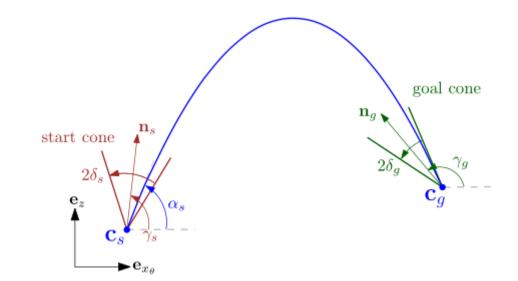
• **Physically-feasible parabolas** linking cs and cg with varying takeoff angles



Non-sliding Constraints

Intersection between parabola plane and friction cones





Velocity Constraints

•
$$v_{s} \leq V_{max}$$

• $\left\{ \begin{array}{l} \alpha_{3}^{-} = (V_{max}^{2} - \sqrt{\Delta})/gX_{\theta} \\ \alpha_{3}^{+} = (V_{max}^{2} + \sqrt{\Delta})/gX_{\theta} \end{array} \right.$
1. Takeoff from initial cone
2. Landing in final cone
3. Takeoff velocity limitation
4. Landing velocity limitation 4.
• $\int c_{s} \int c_{g} \int c_{g$

Motion Planning

- Probabilistic Roadmap Planner
 - Build Roadmap
 - Link nodes with Steer algorithm
 - Over when start and goal position are connected
- Steer Algorithm
 - Selection of takeoff angle
- Beam Algorithm
 - Computes all possible parabola paths
 - Outputs range of permissible angles

Results

<u>https://www.youtube.com/watch?v=vv_K</u> <u>7HqANmk&feature=youtu.be</u>

Strengths and Limitations

- Small computational cost
- Arbitrary environment
- Point robot representation limitation
 - No stance dynamics
- Frictionless Jumps

Paper 2: Single Leg Dynamic Motion Planning with Mixed-Integer Convex Optimization

Yanran Ding | Chuanzheng Li | Hae-Won Park IROS 2018

Key Features

- Used mixed-integer convex programming formulation for dynamic motion planning
- Capable of planning consecutive jumps through challenging terrains

Phases of Jumping Robot

- Stance Phase
 - Leg is in contact with the ground
 - Actuators to apply force
- Flight Phase
 - Follows ballistic motion
 - Choosing foot holds

Constraints

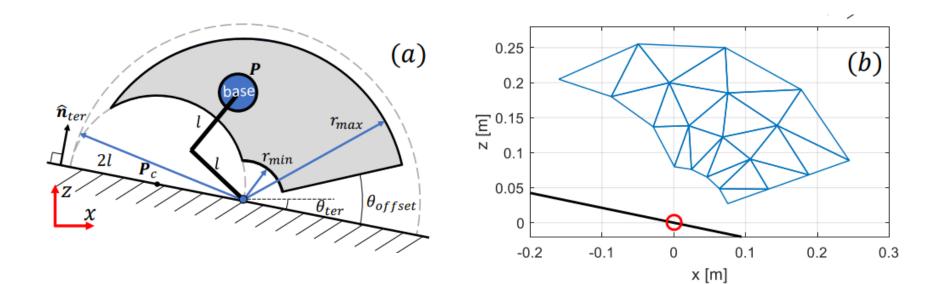
- Joint Torques do not exceed actuator limits
- Goal region should be reached at the end of the motion
- Ground reaction force (GRF) must be within friction cone

Point Mass Dynamic Model

- To simplify dynamics
- Center of Mass assumed to be in the Base Center

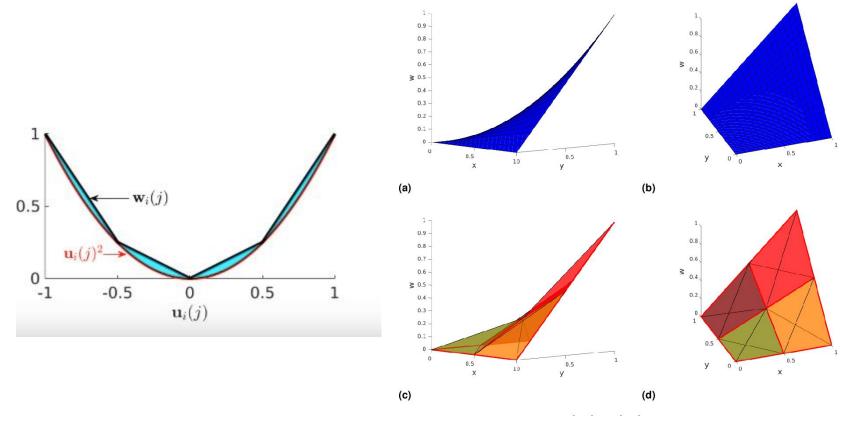
Mixed-integer Convex Torque Constraint

Workspace Discretization



Background: Mixed Integer Convex Optimization

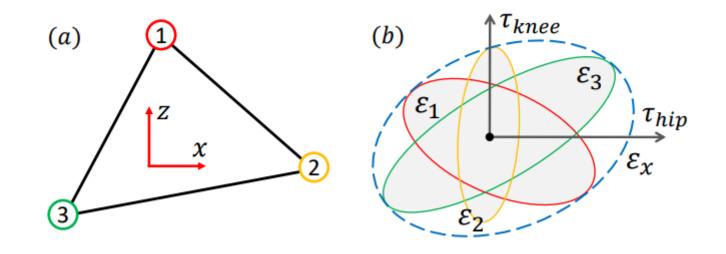
Non-convex optimization to convex optimization



Mixed-integer Convex Torque Constraint

• Convex Outer-Approximation of Torque Ellipsoid

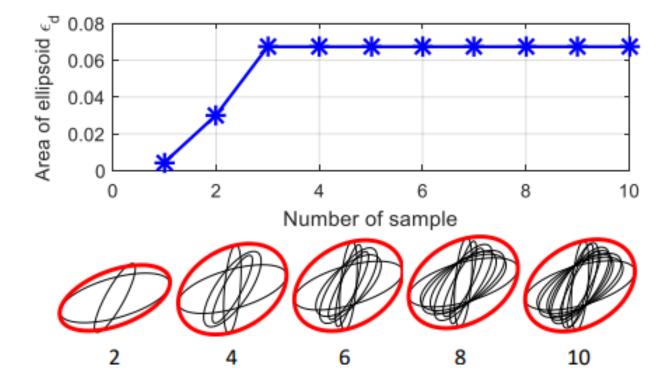
 $||\boldsymbol{J}^T(\boldsymbol{p})\cdot\boldsymbol{F}||_\infty \leq \tau_{max}$



 $\begin{aligned} \boldsymbol{F}^T \boldsymbol{J}_n \cdot \boldsymbol{J}_n^T \boldsymbol{F} \leq & \boldsymbol{F}^T \boldsymbol{X} \boldsymbol{F}, & \forall n \\ & \boldsymbol{F}^T \boldsymbol{X} \boldsymbol{F} \leq \tau_{max}^2 \end{aligned}$

Mixed-integer Convex Torque Constraint

• Convex Outer-Approximation of Torque Ellipsoid

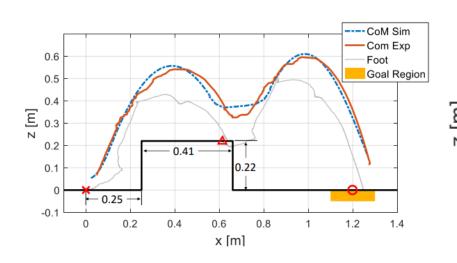


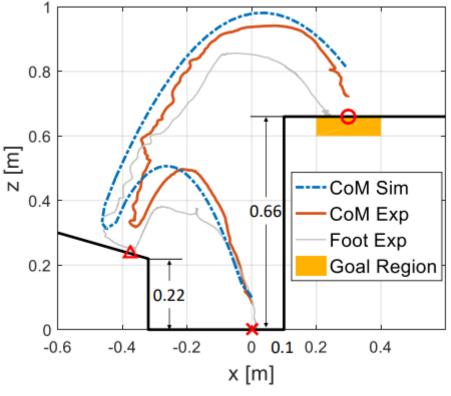
Other Implementation

- McCormick Envelope Approximation
- Foothold Position choice
- GRF Constraints

Results

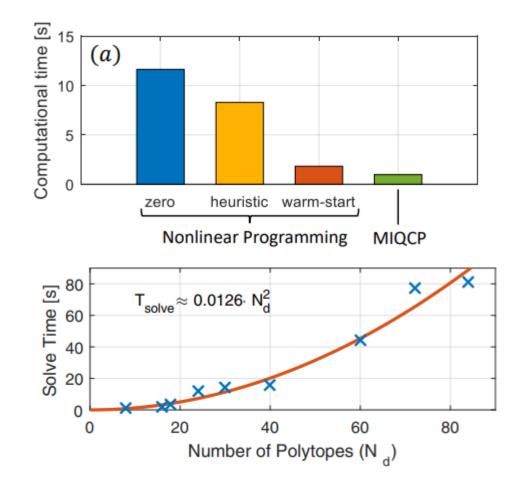
<u>https://www.youtube.com/watch?v=0pFY</u> joUKGu0





KAIS1

Performance



Summary

Summary

• Paper 1: Ballistic Motion Planning

- Jumping point robot navigating in 3d environment
- 2 constraints due to the friction cone
- Constraint to limit takeoff velocity -> robot's speed capacity
- Constraint to limit landing velocity -> impact force tolerance
- Paper 2: Single Leg Dynamic Motion Plannning with Mixed-Integer Convex Optimization
 - Implemented ballistic motion planning for a real robot and simplifies the non-convexity of actuator torque constraint through Mixed-Integer Convex Optimization

